
Lecture 26: Left-over Hash Lemma &
Bonami-Beckner Noise Operator
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Objective I

Suppose we have access to a sample from a probability
distribution X that only has very weak randomness guarantee.
For example, X is a probability distribution over the sample
space {0, 1}n such that H∞(X ) > k . That is, the output of X
is very unpredictable and for all x ∈ {0, 1}n

P [X = x ] 6
1
2k

=
1
K

Our objective is to generate uniform random bits from any
distribution with H∞(X) > k
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Deterministic Extraction I

Ideally, we will prefer to have one function
f : {0, 1}n → {0, 1}m such that it can its output f (X) is close
to the uniform distribution Um (the uniform distribution over
{0, 1}m)
However, we shall show that it is impossible that one function
can extract random bits from all high min-entropy sources.
This impossibility is in the strongest possible sense.

We shall show that for every extraction function
f : {0, 1}n → {0, 1}, there exists a min-entropy source X such
that H∞(X) > n − 1 such that f (X) is constant. We cannot
even extract one random bit from sources with (n − 1)
min-entropy.
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Deterministic Extraction II

The proof is as follows. Consider S0 = f −1(0) and
S1 = f −1(1). Note that either S0 or S1 has at least 2n−1

entries. Suppose without loss of generality, |S0| > 2n−1.
Consider X, the uniform distribution over the set S0. Note
that P [X = x ] 6 1

2n−1 . We have H∞(X) > n − 1.
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Universal Hash Function Family

Definition (Universal Hash Function Family)

Let H = {h1, h2, . . . , hα} be a collection of hash functions such
that, for each 1 6 i 6 α, we have hi : {0, 1}n → {0, 1}m. Let H be
a probability distribution over the hash functions in H. The family
H is a universal hash function family with respect to the probability
distribution H if it satisfies the following condition. For all distinct
inputs x , x ′ ∈ {0, 1}n, we have

P
[
h(x) = h(x ′) : h ∼ H

]
6

1
2m

=
1
M
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Left-over Hash Lemma I

Recall that we have seen that it is impossible for a
deterministic function to extract even one random bit from
sources with (n − 1) bits of min-entropy.

We shall now show that choosing a hash function from a
universal hash function family suffices

Theorem (Left-over Hash Lemma)

Let H be a universal hash function family {0, 1}n → {0, 1}m with
respect to the probability distribution H over H. Let X be any
min-entropy source over {0, 1}n such that H∞(X) > k . Then, we
have

SD
(
(H(X),H), (Um,H)

)
6

1
2

√
M

K
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Left-over Hash Lemma II

Remark. Note that we are claiming that H(X) is close to the
uniform distribution Um over {0, 1}m even given the hash
function H.
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Left-over Hash Lemma III

The proof proceeds in the following steps.

2SD
(
(H(X),H), (Um,H)

)
=E

[
2SD

(
(H(X)|H = h), (Um|H = h)

)
: h ∼ H

]
=E

[
2SD

(
h(X),Um

)
: h ∼ H

]
6E

[
`2

(
Biash(X) − BiasUm

)
: h ∼ H

]

=E

√ ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H



6

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H


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Left-over Hash Lemma IV

The last inequality is due to Jensen’s inequality.

Let us continue our simplification.

2SD
(
(H(X),H), (Um,H)

)
6

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H



=

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 : h ∼ H

− 1

=

√
E
[
M · Col

(
h(X), h(X)

)
: h ∼ H

]
− 1
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Left-over Hash Lemma V

Note that one sample of h(X) collides with a second sample of
h(X) due to the following cases

1 The first sample of X collides with the second sample of X.
Since, H∞(X) > k , we have

Col(X,X) 6
1
K

2 If the first and the second samples from X are different, then
they collide with probability 6 1

M when h ∼ H.

Overall, by union bound, we get that

E
[
Col

(
h(X), h(X)

)
: h ∼ H

]
6

1
K

+
1
M
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Left-over Hash Lemma VI

Substituting this estimation, we obtain

2SD
(
(H(X),H), (Um,H)

)
6

√
E
[
M · Col

(
h(X), h(X)

)
: h ∼ H

]
− 1

=

√
M ·

(
1
K

+
1
M

)
− 1 =

√
M

K

Note that this result says that we must ensure m < k for the
output of the extraction to be close to the uniform distribution
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Overview

Today, we shall introduce the basics of the “noise operator”
This operator is crucial to one of the most powerful technical
tools in Fourier Analysis, namely, the Hypercontractivity
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Noise Operator

Let Nε be a probability distribution over the sample space
{0, 1}n such that

P [Nε = x ] = (1− ε)n−|x |ε|x |

Here |x | represents the number of 1s in x (or, equivalently, the
Hamming weight of x)
Intuitively, imagine a channel through which 0n is fed as input.
The channel converts each bit independently as follows. It
converts 0 7→ 1 with probability ε; and 1 7→ 0 with probability
(1− ε). Note that the probability of the output being x is
(1− ε)n−|x |ε|x |

Our objective is to prove that

BiasNε(S) = (1− 2ε)|S |

We shall prove this result using a highly modular and elegant
approach
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Computation of the Bias I

For 1 6 i 6 n, let Nε,i be the probability distribution defined
below

P
[
Nε,i = x

]
=


(1− ε), if x = 0n

ε, if x = δi

0, otherwise

Intuitively, 0n is fed through a channel. All bits except the i-th
bit are left unchanged. The i-th bit is converted as follows. It
maps 0 7→ 1 with probability ε; and 0 7→ 0 with probability
(1− ε).
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Computation of the Bias II

Let us compute the bias of this distribution. For any
S ∈ {0, 1}n, note that, if Si = 0, we have

BiasNε,i
(S) = 1

For any S ∈ {0, 1}, if Si = 1, we have

BiasNε,i
(S) = (1− ε)− ε = (1− 2ε)

Succinctly, we can express this as

BiasNε,i
(S) = (1− 2ε)Si

So, we can conclude that

Bias⊕n
i=1 Nε,i

(S) = (1− 2ε)
∑n

i=1 Si = (1− 2ε)|S |

It is left as an exercise to prove that the distribution Nε is
identical to the distribution

⊕n
i=1 Nε,i
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Noisy Version of a Function

Let f : {0, 1}n → R be any function
Define the noisy version of f as follows

f̃ (x) = Tρ(x) := E
[
f (x + e) : e ∼ Nε

]
,

where ρ = 1− 2ε
So, we have

f̃ (x) =
∑

e∈{0,1}n
Nε(e)f (x + e) = N(Nε ∗ f )

Equivalently, we have f̃ = Nε ⊕ f (we emphasize that f need
not be a probability distribution to use the notation of ⊕ of
two functions)
Therefore, we get

Bias
f̃
(S) = BiasNε(S) · Biasf (S) = ρ|S |Biasf (S)

That is, we conclude that

T̂ρ(f )(S) = ρ|S |f̂ (S)
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