


Objective

@ Suppose we have access to a sample from a probability
distribution X that only has very weak randomness guarantee.
For example, X is a probability distribution over the sample
space {0,1}" such that Hoo(X) > k. That is, the output of X
is very unpredictable and for all x € {0,1}"
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@ Our objective is to generate uniform random bits from any
distribution with Hoo(X) > k
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Deterministic Extraction

o Ideally, we will prefer to have one function
f:{0,1}" — {0,1}" such that it can its output f(X) is close
to the uniform distribution U, (the uniform distribution over
{0,1}™)

@ However, we shall show that it is impossible that one function
can extract random bits from all high min-entropy sources.
This impossibility is in the strongest possible sense.

@ We shall show that for every extraction function
f:{0,1}" — {0,1}, there exists a min-entropy source X such
that Hoo(X) > n — 1 such that f(X) is constant. We cannot
even extract one random bit from sources with (n — 1)
min-entropy.
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Deterministic Extraction [

@ The proof is as follows. Consider Sy = f~1(0) and
S1 = f71(1). Note that either Sp or S; has at least 27!
entries. Suppose without loss of generality, |So| > 2" 1.
Consider X, the uniform distribution over the set S5. Note
that P[X = x] < 2,,%1 We have Hoo(X) > n— 1.
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Universal Hash Function Family

Definition (Universal Hash Function Family)

Let H = {h1, ha, ..., hy} be a collection of hash functions such
that, for each 1 </ < a, we have h;: {0,1}" — {0,1}". Let H be
a probability distribution over the hash functions in H. The family
‘H is a universal hash function family with respect to the probability
distribution H if it satisfies the following condition. For all distinct
inputs x, x" € {0,1}", we have

P [h(x) = h(x'): h ~H] <

1 1
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Left-over Hash Lemma

@ Recall that we have seen that it is impossible for a
deterministic function to extract even one random bit from
sources with (n — 1) bits of min-entropy.

@ We shall now show that choosing a hash function from a
universal hash function family suffices

Theorem (Left-over Hash Lemma)

Let H be a universal hash function family {0,1}" — {0,1}" with
respect to the probability distribution H over H. Let X be any
min-entropy source over {0,1}" such that Hoo(X) > k. Then, we
have

1 /M

SD ((H(X), H), (Um, H)) < VF
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Left-over Hash Lemma

e Remark. Note that we are claiming that H(X) is close to the
uniform distribution U, over {0,1}™ even given the hash
function H.
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Left-over Hash Lemma

@ The proof proceeds in the following steps.

25D ((H(X) H), (U, H))
=E 2SD( X)|H = h), (U m|H:h)):h~H}
—E 2SD(h X), Un) : h~H|

gE <B1ash(x BiasUm> the~ H]

=E > Blasyx)(S)? —1: h~H
Se{0,1}™

< |E| > Biasyx(S)?—1:h~H
Se{0,1}"
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Left-over Hash Lemma \Y)

The last inequality is due to Jensen's inequality.

@ Let us continue our simplification.

25D ((H(X), H), (U, H))

N

E

Z Biaspx)(5)? —1: h~H
Se{0,1}"

= |E

\

Z Biasyxy(S)?: h~H| —1

Se{0,1}"

:\/E [M - Col (h(X), h(X)) : h ~ H] -1
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Left-over Hash Lemma

@ Note that one sample of h(X) collides with a second sample of
h(X) due to the following cases
© The first sample of X collides with the second sample of X.
Since, Hoo (X) > k, we have

1
1 < =
Col(X, X) %

@ If the first and the second samples from X are different, then
they collide with probability < % when h ~ HL

Overall, by union bound, we get that

1 1

E |Col (h(X), (X)) : h~H| < et
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Left-over Hash Lemma VI

@ Substituting this estimation, we obtain

2D ((H(X), H), (Un, )

<\/IE [M . Col (h(X), h(X)) : h~ H} 1

1 1 M
= M . —_ J— — 1 — JE—
\/ (K + I\/I) K
o Note that this result says that we must ensure m < k for the
output of the extraction to be close to the uniform distribution
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Overview

@ Today, we shall introduce the basics of the “noise operator”

@ This operator is crucial to one of the most powerful technical
tools in Fourier Analysis, namely, the Hypercontractivity
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Noise Operator

o Let N, be a probability distribution over the sample space
{0,1}" such that

PN. =x]=(1- 5)n—lx|61x|

Here |x| represents the number of 1s in x (or, equivalently, the
Hamming weight of x)

@ Intuitively, imagine a channel through which 0" is fed as input.
The channel converts each bit independently as follows. It
converts 0 — 1 with probability €; and 1 — 0 with probability
(1 — ¢). Note that the probability of the output being x is
(1 — ) Ixlg

@ Our objective is to prove that
Biasy_(S) = (1 — 2¢)°!

We shall prove this result using a highly modular and elegant
approach
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Computation of the Bias

@ For 1 < i< n, let N.; be the probability distribution defined
below

(1—-¢), ifx=0"
]P’[Nav,-:x] =<e, if x =90;

0, otherwise

@ Intuitively, 0" is fed through a channel. All bits except the i-th
bit are left unchanged. The i-th bit is converted as follows. It
maps 0 — 1 with probability €; and 0 — 0 with probability

(1—¢).
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Computation of the Bias I

@ Let us compute the bias of this distribution. For any
S €{0,1}", note that, if S; = 0, we have

Biasy,_,(S) =1
Forany S € {0,1}, if S; = 1, we have
Biasy,,(S) = (1 —¢) —e = (1 - 2¢)
@ Succinctly, we can express this as
Biasy, ,(S) = (1 - 2¢)
@ So, we can conclude that
Biasgyr  n_,(S) = (1 - 2e)X515 = (1 - 2¢)°

@ It is left as an exercise to prove that the distribution N, is
identical to the distribution ;] ; N,
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Noisy Version of a Function

o Let : {0,1}" — R be any function
@ Define the noisy version of f as follows
f(x) = Tp(x) =E[f(x +e): e~ N,
where p =1 — 2¢
@ So, we have

F(x)= > Ne(e)f(x+e)=N(N.*f)
ec{0,1}"

Equivalently, we have fF=N.o®f (we emphasize that f need
not be a probability distribution to use the notation of & of
two functions)

@ Therefore, we get

Biasz(S) = Biasy,(S) - Bias¢(S) = #°Bias¢(S)
@ That is, we conclude that
T,(F)(S) = p°IF(S)
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